Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Zinc (Zn) is an essential micronutrient for most eukaryotic phytoplankton. Zn uptake by phytoplankton within the euphotic zone results in nutrient-like dissolved Zn (dZn) profiles with a large dynamic range. The combination of key biochemical uses for Zn and large vertical gradients in dZn implies the potential for rapid rates of Zn removal from the surface ocean. However, due to the ease of contamination at sea, direct measurements of dZn uptake within natural environments have not been previously made. To investigate the demand for dZn and for dissolved cadmium (dCd; a closely related nutrient-like element) within Southern Ocean phytoplankton communities, we conducted 67Zn and 110Cd tracer uptake experiments within the Amundsen Sea, Ross Sea, and Terra Nova Bay of the Southern Ocean. We observed a high magnitude of Zn uptake (ρZn > 100 pmol dZn L−1 d−1) into the particulate phase that was consistent with ambient depleted dZn surface concentrations. High biomass and low partial pressure of carbon dioxide in seawater (seawater pCO2) appeared to contribute to ρZn, which also led to increases in ρCd likely through the upregulation of shared transport systems. These high ρZn measurements further imply that only short timescales are needed to deplete the large winter dZn inventory down to the observed surface levels in this important carbon-capturing region. Overall, the high magnitude of Zn uptake into the particulate fraction suggests that even in the Zn-rich waters of the Southern Ocean, high Zn uptake rates can lead to Zn depletion and potential Zn scarcity.more » « less
-
Climate change is causing decreases in pH and dissolved oxygen (DO) in coastal ecosystems. Canopy-forming giant kelp can locally increase DO and pH through photosynthesis, with the most pronounced effect expected in surface waters where the bulk of kelp biomass resides. However, limited observations are available from waters in canopies and measurements at depth show limited potential of giant kelp to ameliorate chemical conditions. We quantified spatiotemporal variability of surface biogeochemistry and assessed the role of biological and physical drivers in pH and DO modification at two locations differing in hydrodynamics inside and outside of two kelp forests in Monterey Bay, California in summer 2019. pH, DO, dissolved inorganic carbon (DIC), and temperature were measured at and near the surface, in conjunction with physical parameters (currents and pressure), nutrients, and metrics of phytoplankton and kelp biological processes. DO and pH were highest, with lower DIC, at the surface inside kelp forests. However, differences inside vs. outside of kelp forests were small (DO 6–8%, pH 0.05 higher in kelp). The kelp forest with lower significant wave height and slower currents had greater modification of surface biogeochemistry as indicated by larger diel variation and slightly higher mean DO and pH, despite lower kelp growth rates. Differences between kelp forests and offshore areas were not driven by nutrients or phytoplankton. Although kelp had clear effects on biogeochemistry, which were modulated by hydrodynamics, the small magnitude and spatial extent of the effect limits the potential of kelp forests to mitigate acidification and hypoxia.more » « less
-
Abstract A physical oceanographic, geophysical and marine geological survey of Edward VIII Gulf, Kemp Coast, collected data from conductivity–temperature–depth casts, multi-beam bathymetric swath mapping and 3.5 kHz sub-bottom surveying. Modified circumpolar deep water (mCDW) is observed in Edward VIII Gulf, as well as notable bathymetric features including mega-scale glacial lineations and a 1750 m-deep trough. Sedimentological, geochemical, rock-magnetic and micropalaeontological analysis of two kasten cores document regional palaeoclimate and palaeo-oceanographic conditions over the past 8000 years, with a warm period occurring fromc.8 to 4 ka and a shift to cooler conditions beginning atc.4 ka and persisting until at least 0.9 ka. Sediment packages > 40 m thick within deep troughs in Edward VIII Gulf present potential targets for higher-resolution Holocene and deglacial climate studies. Despite the presence of mCDW on the shelf, inland bed topography consisting of highland terrain suggests the likelihood of relative stability of this sector of the East Antarctic Ice Sheet.more » « less
-
Abstract Kelp forests are among the world's most productive marine ecosystems, and they have the potential to locally ameliorate ocean acidification (OA). In order to understand the contribution of kelp metabolism to local biogeochemistry, we must first quantify the natural variability and the relative contributions of physical and biological drivers to biogeochemical changes in space and time. We deployed an extensive instrument array in Monterey Bay, CA, inside and outside of a kelp forest to assess the degree to which giant kelp (Macrocystis pyrifera) locally ameliorates present‐day acidic conditions which we expect to be exacerbated by OA. Temperature, pH, and O2variability occurred at semidiurnal, diurnal (tidal and diel), and longer upwelling event periods. Mean conditions were driven by offshore wind forcing and the delivery of upwelled water via nearshore internal bores. While near‐surface pH and O2were similar inside and outside the kelp forest, surface pH was elevated inside the kelp compared to outside, suggesting that the kelp canopy locally increased surface pH. We observed the greatest acidification stress deeper in the water column where pCO2reached levels as high as 1,300 μatm and aragonite undersaturation (ΩAr < 1) occurred on several occasions. At this site, kelp canopy modification of seawater properties, and thus any ameliorating effect against acidification, is greatest in a narrow band of surface water. The spatial disconnect between stress exposure at depth and reduction of acidification stress at the surface warrants further assessment of utilizing kelp forests as provisioners of local OA mitigation.more » « less
An official website of the United States government
